当前位置:首页 » 驻马平顶 » 三门峡超微

三门峡超微

发布时间: 2021-03-10 03:26:43

『壹』 影响环境质量的因素有哪些,控制环境污染提高资源利用效率途径是什么

环境自净能力按发生机理可分为三类:
(1)物理净化作用。通过稀释、扩散,吸附、沉淀、淋洗,挥发,沉降等物理过程达到净化的目的。如含有烟尘的废气,通过大气扩散,降水淋洗,重力的沉降等作用,而得到净化;混浊的污水进入江河湖海后,通过物理的吸附,沉淀和水流的稀释,扩散等作用,水体恢复到清洁的状态。土壤中挥发性污染物如酚、氰,汞等,因为挥发作用,其含量逐渐降低。

(2)化学净化作用。通过氧化、还原,化合、分解,吸附,凝聚,交换等化学反应过程达到净化的目的。如某些有机污染物经氧化还原作用最终生成水和二氧化碳等;水中铜、铅、锌、镉、汞等重金属离子与硫离子化合,生成难溶的硫化物沉淀;铁,锰、铝的水合物,粘土矿物,腐植酸等对重金属离子的化学吸附和凝聚作用。

(3)生化净化作用。通过微生物的吸收、降解以及作用中的化学反应等生物化学过程达到净化的目的。如植物能吸收土壤中的酚、氰,并在体内转化为酚糖甙和氰糖甙;球衣菌可以把酚、氰分解为二氧化碳和水;绿色植物可以吸收二氧化碳,放出氧气。
环境容量是在控制污染物浓度时提出的概念。因为尽管各个污染源排放的污染物可能达到(包括稀释排放而达到的)浓度控制的标准,但若不考虑环境自净化和容纳的能力,当某一地区由于污染源集中,污染物排放总量过大,仍会使环境受到严重污染。因此,必须考虑环境容量问题,把各个污染源排入某一环境的污染物总量限制在环境容量允许的范围之内,即总量控制法。

污染物也有多种分类方法。例如,按污染物污染的主对象可分为大气污染物、水体污染物,土壤污染物等。按污染物的性质可分为物理污染物(包括噪声、微波辐射、放射性污染物等)、化学污染物(包括无机污染物和有机污染物)和生物污染物(包括病原体,变应原污染物等)。也可按污染物的形态分为气体、液体和固体污染物。
污染物总量受污染源分布状况、污染物排放方式、污染物质性质、环境质量标准以及自然环境背景五个重要因素的影响和支配。其中,自然环境背景是客观因素,前三个是可以通过技术手段加以控制的人为因素,而环境质量标准是客观存在与主观愿望之间的调控因素,受到经济与技术的约束。由于允许排污总量随污染源分布状况与污染物排放方式不同而不同,所以调控污染源分布状况、改变污染物有害性质以及污染物排放方式成为总量控制的重要问题。另外,由于政策和技术原因,无法完全限制全部污染物质的排放和在限定时间内按规定的排污总量全部排出,仍可能出现超标排放而污染环境。因此,实施总量控制的同时,还须附加控制浓度的措施,才能有效地防治环境污染。

二、能源利用与环境

能源不仅是社会经济发展必要的物质基础,而且是现实的重要污染源。如煤炭的大量开发和利用,既严重破坏了开采地的生态环境,又会大面积污染消费地的大气环境;因大量燃烧化石燃料而排放CO2所引发的全球性气候变暖问题。随着经济发展水平的提高,人们对环境质量的价值越来越重视,环境问题对能源战略的影响已不容忽视,越来越严格的环境排放标准正推动着清洁能源的发展。

能源的利用过程可分为开采开发和消费应用两大过程。常规能源中的煤、石油、天然气、水能、核裂变燃料以及风能、地热能等需要开发,能源的消费以电能、热能形式为主。因此大规模的能源消费,都需要通过燃烧来释放化石燃料的化学能而转换成热能。从能源的开发到最终的消费使用,每一过程均对环境造成不同程度的危害,但以能源消费中化石燃料的燃烧过程造成的环境污染尤为严重。

(一)能源开发与环境问题

1.煤开发的环境问题

煤的地下和露天开采都会严重破坏生态环境,而且采煤是一种危险而有损健康的职业。

(1)岩层地表塌陷。岩层深处的煤采用地下开采方法。当煤层被开采挖空后,上覆岩层的应力平衡被破坏,导致上岩层的断裂塌陷,甚至地表整体下沉。塌陷下落的体积可达开采煤炭的60%~70%,如开滦矿区地面沉陷平均为6m。地表沉陷后,较浅处雨季积水、旱季泛碱,较深处则长期积水会形成湖泊;塌陷裂缝使地表和地下水流紊乱,地表水漏入矿井,还使城镇的街道、建筑物遭到破坏。治理塌陷的方法有:对于较浅的煤层,可在采煤时留下部分煤柱支撑煤层,但采煤效率很低;最有效的方法是将采空部分用碎石、砂、矸石、废油页岩等材料全部回填,但填充矿井需要付出昂贵的代价。

(2)地层表面破坏。接近地表的煤层采用露天开采方法。露天采煤时,先挖去某一狭长地段的覆盖土层,采出剥露的煤炭,形成一道地沟。然后将紧邻狭长地段的覆盖土翻入这道地沟,开采出下一地段的煤炭,依次类推。其结果,平原采煤后矿区地表形成一道道交错起伏的脊梁和洼地,形如“槎板”;丘陵采煤后出现层层“梯田”。露天煤矿开采后使植被遭到破坏,地表丧失地力,地面被污染,水土流失严重,整个生态平衡被打破。治理露天采煤造成破坏的方法有:开挖时尽量保持地表土仍覆盖在上层地面;用城市污泥或熟土回填矿区,进行复垦和再种植等。复垦的土地需要养护若干年,才能逐渐改善土壤条件,种植植物,因而代价也很昂贵。

(3)矿井酸性排水。煤炭中通常含有黄铁矿(FeS2),与进入矿井内的地下水、地表水和生产用水等生成稀酸,使矿井的排水呈酸性。此外,矿区洗煤过程中也排出含硫、酚等有害污染物的酸性水。大量的酸性废水排入河流,致使河水污染。治理酸性排水的方法有:防止大量的水进入矿井;封闭废弃矿井入口;把废水排入不会自流排放的废井等,但同样存在经济问题。

(4)废弃物堆积。煤炭的开采和选洗过程中,产生大量的煤矸石和废石,矿区固体废物堆积数量巨大。全世界每年排矸量10~12亿t,中国目前年排矸量超过1亿t,而综合利用不到2 000万t。现已堆积煤矸石16~20亿t,占地面积约1万hm2。矸石堆积除了占用土地,还不断自燃,排放有害气体和灰尘,污染大气和水体。矸石可以设法综合利用:作为供热或发电用的劣质燃料,或作为工业原料用于建筑、修路以及化肥生产等,至少可用于矿井回填。目前,全国平均综合利用率大约只有20%左右。

(5)粉尘飞扬。煤的开采、装卸、运输过程中,难免有大量细小的煤灰、粉尘飞扬,使矿区空气中的固体颗粒悬浮浓度增大,严重危害人体健康及矿区生态环境。

(6)自燃。开采出来的煤堆或地壳煤层经常会自动地缓慢燃烧。煤的自燃不仅浪费有价值的资源,而且释放一氧化碳、硫化物等有害气体,严重污染空气。

煤炭是中国的第一能源,煤炭开采的环境保护与综合利用尤为重要。

2.铀生产的环境污染

核工业对环境的放射性污染主要来自核燃料生产和使用后燃料的处理。一般核燃料生产过程的放射性污染较轻,不构成严重危害。但它终究对人体有害,仍须予以充分注意。

核裂变燃料的基本原料是铀。铀的生产过程包括勘探、开采、选矿、水冶加工,最后精制得到的浓缩铀。在核燃料生产中,主要污染源是铀矿山和铀水冶厂,污染物均为放射性物质,随生产过程中的废气、废水和固体废物排向环境。虽然排出的废物放射性水平低,但排放量大,分布广。

铀矿区空气污染物有放射性气体氡、衰变子体和放射性粉尘,主要来自掘进、破碎、装运等过程中产生的氡和粉尘,随矿井通风系统进入大气。此外,矿岩石、矿石堆、废石堆、尾矿堆、矿坑水等都不断地析出氡气。铀矿山废水中的污染物不仅包含氡、铀及其衰变子体,而且有其他共生的有害化学物质。废水来自地下水渗入矿井后形成的矿坑水,湿法开采作业产生的废水,流经各种矿石堆的雨水等。铀矿山的固体废物主要是开采挖掘出来的废石,以及预选淘汰矿石,还有预处理产生的矿渣或尾矿。这些固体废物具有低水平的放射性,数量非常大。

水冶过程是铀生产的重要环节,其排出的废气放射性水平很低,一般不致引起环境放射性污染。水冶厂废水中的污染物有镭226、硫酸根、硝酸根、有机溶剂等。其中镭226是最危险的放射性物质,而酸性废水排人河流造成的危害往往比放射性物质更严重。水冶厂的固体废物主要是提取铀后的尾矿,还有受到污染的设备、物品等。尾矿数量大致与原矿石相等。虽然其中残留铀不及原矿石含量的10%,但原矿石总放射性的70~80%仍然保留在尾矿中,如镭放射性仍残留95%以上。

核燃料生产中对环境的污染,最主要是含有放射性污染物的废水排入河流造成水体污染,在排放口下游附近,镭含量往往超标,使鱼类和其他水生生物几难以生存。固体废物污染附近土地,或由于受到雨水冲淋,污染物随径流流入河流,往往造成一定程度的土壤污染和水体污染。铀矿山和水冶厂排出的废气,在大气自净能力的作用下,一般不会引起严重污染。

通常,铀矿山的废水用钡盐除镭或用其他方法净化后排放;矿渣采取堆放弃置或回填矿井的方法处置。水冶厂废水贮存于尾矿坑中,澄清后一部分重复使用,大部分自然蒸发、渗入地下或排入河川;尾矿砂可以回填矿井,也可以采用在尾矿砂堆表面喷涂化学药剂,或用混凝土覆盖等各种稳定方法使污染减少扩散。如果采取各种合理的预防措施,核燃料生产过程中的污染排放不会造成太大危害。核放射污染的主要危险是应用浓缩铀的核反应堆突发事故和燃料的后处理。

3.水能开发对环境的影响

水能的最主要利用是水力发电。由于水力发电本身具有无环境污染的危害,以及水力是可连续再生的自然资源等一系列优点,水电总是以清洁能源有些列入能源的开发战略。但是,水力发电也存在对生态环境的影响,它在给人类带来巨大利益的同时,也会带来一定的危害。水电工程无论是建设初期还是建成后使用,对环境的影响都是巨大的,尤其是建立拦河畜水的大坝,破坏了原有河流流域的生态平衡。因此,必须对水电工程引发的环境问题做出全面的、充分的评估,从而采取有效的对策和措施,把危害降到最低程度。水能开发对环境的影响有:

(1)对生态环境的影响。现代水电工程区域很大。由于库区大片植被遭到破坏,使该区内的野生动物丧失了栖息地和食物来源而被迫迁徙,原来的动物群落解体、消失或灭绝。

水库改变了河流环境状况,直接或间接影响鱼类与其他水生生物的生存。水库淹没了一些鱼类的产卵和栖息地,阻挡某些鱼类的回游路径。如美国的哥伦比亚河修建的大古力水坝使大鳞大马哈鱼的回游栖息和产卵地减少了70%。水库内可能出现氮、磷及有机物含量过高,使鱼类患弯体病死亡,也会造成库水富营养化而影响鱼类生存。

水库会改变该区域的气候。由于水的热容量大,使得水库和陆地上空的大气压力发生改变而形成风。在水库影响区域内,有风天数明显增加。此外,水库附近上空的湿度增加,由于水库和陆地的温度存在差异,冬季可能使降水有所增加,而夏季可能会使降水减少。还有,水库对当地气温起着明显的调节作用,能缩小最高气温和最低气温的温差。如新安江水库建库前最高气温为45℃,最低气温为-12℃,建库后则分别为41.8℃与-7.9℃。

(2)对自然环境的影响。水利发电利用水流的机械能,需要尽可能高的落差,必须建筑大坝拦河蓄水。筑坝时需要进行修建交通道路、建设房屋以及劈山采石等工作,水库蓄水将水位大幅度提高,将大量的土地、森林、村庄城镇、或名胜古迹永久淹没。这可能使自然景观永远消失,风光绮丽的崇山峻岭受到破坏。如修建黄河三门峡水电站淹没了660km2的良田,包括元代修建的道教圣地永乐宫(又称大纯阳万寿宫)。

(3)对社会环境的影响。除了自然生态环境问题,移民是水电建设的社会环境问题,也就是需要建立一个新的社会生态平衡系统。人口迁移问题远比其他生物经受的变化复杂,这对库区居民的生产和生活有着明显的影响。新建的居住区必须重视移民的风俗习惯和对当地居民的影响,避免造成和激化社会矛盾。此外,应避免移民区的地方病和流行病异地传播。

(4)泥沙沉积。含有泥沙的河水进入库区后,流速减小,泥沙逐渐沉积下来,降低了水库容水量。泥沙沉积严重影响水库的功能,甚至会使整个水电站报废。黄河三门峡水电站因泥沙沉积被迫改建四次,而发电量也只有原设计能力的10%。美国、印度、塞浦路斯等国的130座水库调查表明,每年淤积的库容量为2%~14.3%。水库内沉沙淤泥还会加剧水坝下游河流对河岸的侵蚀,使之与淤泥沿岸沉积的平衡被破坏,威胁沿岸城市和桥梁地基;淤泥减少会使下游低级微生物得不到营养大量死亡,从而导致鱼类急剧减少,引起该区域水生生态的变化。

我国江河泥沙流失严重,据不完全统计,每年流失近50亿t,尤以黄河、长江为最。对于水库泥沙淤积,首先要在流域范围内植树造林,防止水土流失;此外,筑坝建库之前需考虑泥沙沉积的影响,水库设计要完善滞洪排沙的功能

(5)诱发地震。水库畜水改变和破坏了库区岩体的应力的平衡与稳定,可能诱发地震。由于引起水库地震的相关因素很多,目前人们对它的成因认识尚不够统一。水库地震与库坝区岩石特性、地质结构和应力场、水文地质条件以及水库要素(坝高、库容、库水深度、水库面积及畜水速度)等因素有关。各类岩石中,诱震水库位于碳酸盐岩地区的比较多,我国约占72%,岩浆岩区震级较高。有洞穴、漏斗和较宽断裂的岩溶透水地区,诱发地震的概率较高,但震级较小。高坝水库(高于100m,库容大于108 m3)发震可能性较高。60年代,印度的柯伊纳、希腊的克里马斯塔、中国的新丰江,赞比亚的卡里巴,水库相继发生6级以上强震,埃及阿斯旺水库(坝高111m,库容居世界之二,1640´108 m3)地震最大一次为5.6级。

(6)对水库滑坡的影响。水库岸边岩体中的松软夹层,是制约岸坡稳定,导致滑坡主要因素。由于水库水位提高,长期浸泡使松软夹层软化,河岸岩体强度降低,容易发生滑坡或崩岩。其结果会导致库容减小,威胁过往航运船只,激起涌浪危及大坝的安全。自然界异常活动,如暴雨、洪水、地震以及人类在沿岸过度活动等,极易诱发滑坡现象。

(二)能源消费与环境污染

在人类的生产和生活中,需要将能源从初级形式转换为可以消费应用的高级形式。这种转换过程对环境产生了各方面的负面影响。

机械能(位能或动能)、热能、化学能、质量能以及光、核、电、声、磁等都是能量的基本形式,它们在自然中以各种形式出现。如太阳能是光能;化石燃料属于化学能;水能是位能;海浪和风能贮存着动能;等等。各种能量中,热能、机械能和电能消费最多,它们在不同的工业装置中完成各种转换过程。如锅炉把燃料化学能→热能,汽轮机把热能→机械能,发电机把机械能→电能,三者组成火力发电厂;汽车的内燃机将燃料化学能→热能→机械能;水电站将水的位能→动能→电能;太阳能集热器或电池分别将光能转换为热能或电能等。高品质的电能也可以转换为光、热或机械能,用于照明、取暖或做功。这些在人为干预下的能量转换过程,不仅得到了造福于人类的结果,而且产生了有害于环境的某些不良效应,即环境污染。

根据热力学定律,任何能量转换装置的效率都不能达到100%。如使用非再生性常规能源,火力发电厂将煤的化学能转化为电能的效率约40%;汽车发动机将石油化学能转化为机械能的效率约25%;核电站的效率约为33%。可见,大部分能源在消费过程中以热能的形式散失于环境,造成热污染,同时还向环境排放有害污染物,产生不良的环境效应。因此,提高能量资源利用效率,不仅可以减少能耗,节约能源,提高产品的经济性;而且减少环境污染,有利于环境保护。

常规能源中水能的利用与化石燃料相比较,其优势非常突出。水在自然河流中流动的机械能,一部分会转化为热能分散于水中。水电站将水的机械能转化为电能输送到各地,在电能消费处化为热能而散失,即水能利用的结果,只不过改变了热量的空间分布,对大环境而言,没有热量的增加。水电站在运行时,没有废热和污染物的排放,对环境几乎没有不利的影响。

多数环境污染问题与能源应用直接有关,如空气污染、水体和土壤污染、热污染、放射性污染、固体废物、噪声等。化石燃料的燃烧,排放的SO2、NQx、CO、碳氢化合物和烟尘等直接污染大气,污染物在大气中经过物理过程和光化学反应形成酸雨和光化学烟雾影响涉及更广的范围,除大气之外,还包括水体和土壤。排放的大量CO2和废热引起温室效应,造成区域性和全球性的危害。能源工业产生的大量固体废物也污染大气、水和土壤。放射性污染主要来自核电站,核武器试验也是污染源。近年来,三哩岛、切尔诺贝利等几次核电站重大事故说明,无论怎样小心防护,核电站终归是一个危险装置,其事故的发生往往是灾难性的。此外,与火力发电相比,核电站排放废热更严重,它将全部热能的2/3排向环境。

三、环境污染对生物的影响

生物的生存环境被污染后,生物体内的毒物含量会逐渐积累。当富集到一定数量后,生物就开始出现受害症状,生理、生化过程受阻,生长发育停滞,最后导致死亡。

(一)环境污染对植物的影响

污染物影响植物的生理生化作用。污染物对光合作用的影响是植物受害的主要原因。如S02抑制二磷酸核酮糖羧化酶的活性;重金属Pb2+能抑制菠菜叶绿素中光合电子传递,这都阻止光合作用中对C02的固定,使光合作用下降。S02还能使植物的总含氮量与蛋白质含氮量均下降;重金属镉能明显影响种子中氨基酸含量,从而影响植物的营养成分。污染物能破坏植物细胞膜的透性,并使植物的呼吸作用下降。

污染物能改变并降低土壤微生物和酶的活性,影响植物根系对土壤中营养元素的吸收。对重金属镉的研究表明:①镉能明显影响玉米幼苗对氮、磷、钾、钙、镁、铁、锰、锌、铜的吸收,使玉米幼苗体内氮、磷、锌的含量降低。②镉可以影响和破坏植物细胞的超微结构。如玉米用镉处理后,细胞核变形、外膜肿大、内腔扩大,核仁趋向碎裂;幼苗根的线粒体肿胀,腔内有絮状沉积物,出现受害症状;叶绿体超微结构层次减少,分布不均、混乱,发生明显变化。③用镉处理种子后,发芽率下降,抑制水生植物生长发育。随着镉浓度增大,根的增加量相应减少,断根增加,降低了根的吸收功能。加上植物叶片褪绿,光合作用减弱,最终导致生物产量的降低。

(二)环境污染对动物的影响

环境污染影响动物正常的生理功能,威胁动物的生存。污染物明显破坏动物的内脏。有些污染物,如Pb、Cd还能使鱼脊椎弯曲。有机氯农药严重影响鱼类、水鸟、哺乳动物的繁殖机能,使许多鸟类蛋壳变薄。重金属元素对鱼类的呼吸系统有严重的影响和破坏作用。这些重金属元素能粘附和积累在鱼鳃的表面,导致鳃的上皮和黏液细胞产生贫血和营养失调,而且还能降低血液中呼吸色素的浓度,使红血球减少。其结果,影响了鱼类对氧的呼吸作用和降低血液输送氧气的能力,使得鱼类呼吸器官机能衰退。对一些污染物的研究结果表明,甲基汞能使血红蛋白、血浆中的Na+和Cl-增加;Cd+能干扰肝脏对维生素B12的正常储存;用亚致死剂量镉处理鲽鱼有明显的贫血反应。

『贰』 陕州人民医院的医院简介

医院引进国际尖端的德国鼻咽内窥镜技术、美国DNR等离子超微水融术、美国筛前神经和翼管神经阻断术、瑞士电动鼻钻系统等一系列尖端医疗技术。
医院现有各类专业技术人员两百多名、工勤人员32名、高级中级职称人员多名、各类初级人员64名,以耳鼻喉科、妇产科为主要拳头科室。
医院邀请了一大批国内享有盛名的耳鼻咽喉专家,2011年更荣获三门峡地区唯一【全国耳鼻喉疾病防治工程定点医院】殊荣,医院凭借一流的技术、一流的设备、一流的专家、一流的服务、一流的管理,在省内同行业中居于权威和领先的地位。 从美国、德国、瑞士等国引进了一系列国际领先的高精度、高智能的专业全套设备,解决了传统诊疗耳鼻咽喉疾病的不足,电脑全程监控、自动检测、自动分析,能精确的诊断出导致耳鼻咽喉疾病的各类病因,为临床诊断和对症治疗提供了准确科学的依据。
提高医疗服务质量,是百姓对我们的期盼,也是我们每一位医疗工作者一生的追求。采摘一片生命的绿叶让病人的期盼和我们的治疗交融,在记忆中烙下快乐的痕迹,向病痛作深沉的告别! 陕州人民医院是病人生命的乐园,是社会健康的港湾。

『叁』 中元古代长城纪构造层——长城系熊耳群

熊耳群呈北西向分布于山西省绛县、垣曲,河南济源市西北、陕县、渑池、嵩县、鲁山西、确山县南,呈近东西向分布于嵩县、卢氏北部—陕西省洛南地区,为一三叉式大陆裂谷火山岩沉积,喷发环境以陆相为主,部分为海相。喷发中心在山西省垣曲—三门峡—崤山—汝阳县付店—方城县拐河—确山县瓦岗一线,最大厚度大于8009m(嵩县旧县龙潭沟—火神庙)。自下而上划分为大古石组、许山组、鸡蛋坪组、马家河组和龙脖组,各组间为整合接触。

龙脖组1965年在嵩县纸房乡龙脖村建立,河南区调队于1981年在编制河南省地质图时认为龙脖组属鸡蛋坪组,故予以废弃,之后《河南省区域地质志》(1989)、《河南省岩石地层》(1997)两书中均采用该方案。第一地质调查队在1987年1:5万河南省栾川北部区域地质调查和1990年1:5万嵩县幅区域地质调查中查明龙脖组主要由一套酸性喷发岩夹凝灰岩、大理岩等组成,与下伏马家河组为侵入-喷发不整合接触,厚121~946m。王志宏(2000)及本次研究同意第一地质调查队意见,认为龙脖组是熊耳群第二个基性-酸性喷发旋回的上部沉积,将其置于熊耳群顶部。

熊耳群大古石组与下伏古元古界银鱼沟群、嵩山群之间呈平行不整合接触,与下伏新太古界太华岩群之间呈不整合接触;与上覆汝阳群小沟背组、五佛山群兵马沟组、高山河群呈平行不整合-角度不整合接触,或被汝阳群云梦山组超覆覆盖,小沟背组、兵马沟组、高山河群、云梦山组底部砾岩的砾石主要来源于下伏熊耳群。

2.1.3.1 主要岩性特征

(1)大古石组

代表性剖面位于济源市邵源乡黄背角大鼓石村,由河南省区测队于1964年测制。主要岩性为砂砾岩、砂岩、砂质页岩、页岩夹少量薄层状灰岩,最大沉积厚度212m,含微古植物Leiominuculaaff.minuta,Taeniatum crassum,Trematosphaeridium holtedahlii,T.minutum,Polyporata sp.。

(2)许山组

代表性剖面位于济源市邵源乡北寨村三担河—建虎门,由河南省区测队于1964年测制。主要岩性为灰绿色、灰紫色安山岩、辉石安山岩、安山玄武岩,夹紫红色英安岩及少量火山碎屑岩,厚269~3625m,含微古植物Leiominucula aff.minuta,Trematosphaeridium minutum。

(3)鸡蛋坪组

代表性剖面位于山西省垣曲县同善乡鸡蛋坪村,由河南省区测队于1964年测制。以紫红、灰紫色石英斑岩为主,黄河以南大部分地区夹灰紫色安山岩及少量含海绿石长石岩屑砂岩、叠层石灰岩、凝灰岩、泥岩等,厚0~3922m。

(4)马家河组

代表性剖面位于山西省垣曲县同善乡吴家村—山顶村,由河南省区测队于1964年测制。主要岩性为灰绿、暗绿、紫灰色安山岩、辉石安山岩、玄武安山岩,夹流纹岩、英安岩、火山碎屑岩、砂岩、页岩及少量灰岩等,厚152~3102m,含叠层石Gruneria biwabikia。

(5)龙脖组

代表性剖面位于嵩县纸房乡龙脖石楼沟,由河南省第一地质调查队于1990年重测。

龙脖组主要岩性为紫红、紫灰色流纹斑岩,夹安山岩、辉石安山岩、凝灰岩、粉砂岩、鲕状灰岩等,厚121~946m。

2.1.3.2 时代划分及区域对比意见

熊耳群中微古植物组合的特点是:形态比较简单,个体较小,属、种较少,以“超微体”的Lei- ominucula(光面小球藻)和Trematosphaeridium(穴面球形藻)为主要类型,可与蓟县剖面长城系对比。

熊耳群仅发育在华北陆块南缘的河南—陕西洛南和山西南部地区。目前已有的测年资料中孙大中(1991)在许山组中获得U-Pb法年龄1826±32Ma,1840±4Ma,1829±1429Ma,表明熊耳群的下限在1800Ma±。在熊耳群中还获得Rb-Sr法年龄1459±48Ma,1439±35Ma(乔秀夫等,1985),Rb-Sr法年龄1393±66Ma(李云军,1987),在侵入熊耳群的同碰撞花岗岩(付店闪长岩)中获得U-Pb法年龄1440Ma(1:5万付店幅,1988),在侵入熊耳群的霓霞正长岩脉中获得Rb-Sr法年龄1374.5Ma(1:5万任店幅,1986)。

分布于潘河—马超营—拐河—驻马店一线以北的熊耳群没有变质,以南的熊耳群普遍发生了区域变质作用,变质程度达低绿片岩相(1:5万保安幅,1995;四里店幅,1989)-高绿片岩相黑云母带(1:5万胡庙幅,1994;毛集幅,1990),在同一地区,熊耳群与其上覆汝阳群之间存在明显的变质程度差异,如确山县胡庙地区熊耳群为高绿片岩相,汝阳群为低绿片岩相(1:5万胡庙幅,1994)。

在方城县拐河地区高山河群(未分组)沉积不整合在侵入熊耳群的王家营片麻状钾长花岗岩(Pb-Pb法年龄1706Ma)之上(1:5万保安幅,1995),在卢氏县官道口乡朱阳岔高山河群(未分组)沉积不整合在侵入熊耳群的朱阳岔角闪石英二长岩(U-Pb法年龄1731±29Ma)之上,表明华北陆块南部地壳在熊耳群大陆裂谷闭合的同时(或稍晚时期)不均匀抬升,发生较长时期剥蚀作用,致使熊耳群发生了不同程度的缺失,深成岩体被剥蚀出露,其后再度不均匀下降重新接受沉积。山西区调队于1974年将使得熊耳群裂谷盆地闭合的构造运动命名为王屋山运动,时间为距今1400Ma前。在王屋山运动中分布于板块南缘内陆俯冲带内的熊耳群发生了由南向北变弱的区域变质作用。

综上所述,熊耳群形成时代为长城纪。

热点内容
驻马店上蔡县邮编 发布:2021-03-16 21:53:57 浏览:888
新发地招聘 发布:2021-03-16 21:51:19 浏览:217
漯河大伟 发布:2021-03-16 21:51:07 浏览:401
相亲爱一家 发布:2021-03-16 21:49:54 浏览:504
校园跳蚤市场系统 发布:2021-03-16 21:48:31 浏览:929
洛阳到巩义汽车时刻表 发布:2021-03-16 21:48:15 浏览:108
男人胖相亲 发布:2021-03-16 21:47:49 浏览:948
苏宁郑州网点电话查询 发布:2021-03-16 21:47:42 浏览:459
同城帮二手良品真假 发布:2021-03-16 21:47:20 浏览:227
河南周口甲醇 发布:2021-03-16 21:42:35 浏览:197